

Ovarian failure - Biologic therapy

ഷ്

VIRTUAL CONGRESS

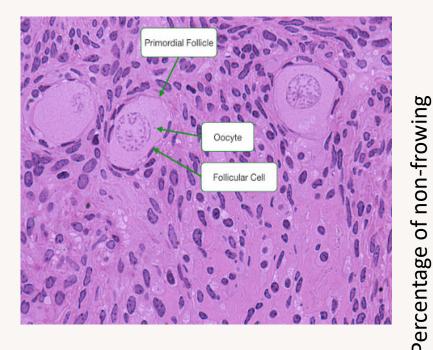
Aleksandar Ljubić

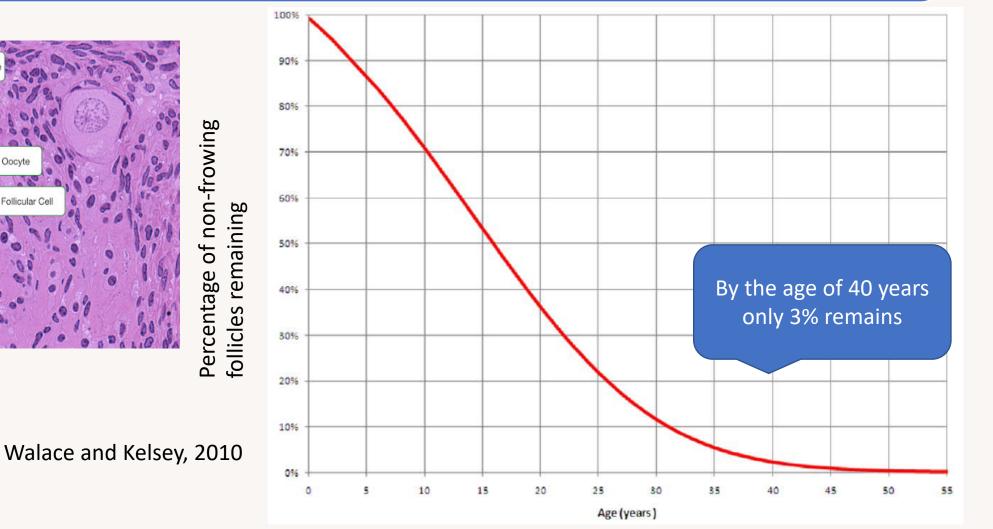
Medigroup Helth system, Serbia St. Jaimes, Malta DIU Libertas, Croatia

BIOLOGIC THERAPY - definition

<u>**Cells</u>** - Autologous, allogenic, or xenogeneic <u>**cells**</u> propagated, expanded, selected, pharmacologically treated</u>

Cell products


altered in biological characteristics *ex vivo* to be administered to humans



Prevention, treatment, cure, diagnosis or mitigation of disease or injuries

October 14, 1993. 58 FR 53248

BY THE AGE OF 30 YEARS ONLY 12% OF THE PRE-BIRTH PRIMORDIAL FOLLICLE POPULATION IS PRESENT

GYNECOLOGICAL **endocrinology** 9[™] WORLD CONGRES 2-5 DECEMBER 2020

ISGE

THE MOST <u>CHALLENGING</u> PATIENTS IN ART

- Women of **advanced maternal age** with a low ovarian reserve make up 9%-24% of patients seeking ART.
- **Poor responders** with a low number of remaining antral, gonadotropin=dependant, stimulus responsive follicles within the ovaries.
- Women with **premature ovarian insufficiency** (POI) due to genetic, metabolic or autoimmune diseases, cancer treatment, idiopathic reasons etc.
 - Incidence of POI has been reported to be 1% in women younger than age 40 and 0.1% among women under 30 years.

THE <u>CONCEPT</u> OF OVARIAN REJUVENATION

- Ovarian rejuvenation is an attempt to overcome poor response by enhancing recruitment of resting follicles or improving quality og aging oocytes.
- It aims to improve fertility in women with low ovarian reserve due to advanced maternal age or POI
 - Three out of four women with POI have ovarian follicles remaining in the ovaries; yet, these follicles remain dormant (De Vos M et al., Lancet, 2010).

A NUMBER OF ALTERNATIVE OPTIONS ARE CURRENTLY BEING INVESTIGATED

- Intraovarian injection of Platelet Rich Plasma (PRP)
- Autologous Stem cell Ovarian Tranplatation (ASCOT)
- In Vitro Activation (IVA) of dormant follicles using chemical compounds and/or fragmentation
- SEGOVA Combination (PRP+ASCOT+alVA)
- Autologous mitochondrial transfer (AUGMENT) of oocytes

INTRAOVARIAN INJECTION OF PLATELET RICH PLASMA (PRP)

WHAT IS <u>PLATELET RICH PLASMA</u> (PRP) AND HOW IS IT <u>ADMINISTRED</u> FOR OVARIAN REJUVENATION

- Platelet Rich Plasma (PRP) is a highly concentrated solution of plasma, prepared from the patient's own blood.
 - Contains a concentrated source of growth factors, namely insulin-like growth factor 1 and 2 (IGF-1, IGF-2), fibroblast growth factor (FGF), epidermal growth factor (EGF), transforming growth factor beta (TGF-b), hormones and cytokines.
- Intraovarian administration of autologous PRP; transvaginal, ultrasound-guided, intramedullary injection in the subcortical layers.
 - No standard protocol approximately 2-5 mL PRP in each ovary (injections at multiple sites and at least three punctures per ovary with a 17-gauge needle).

WHAT IS THE EVIDENCE?

- PRP is know for it's regenerative and tissue healing abilities, however, the potential beneficial role in ovarian regeneration is **merely a hypothesis**.
- No animal studies on effect on ovarian function following PRP injection.
- In 2016, Pantos et al A group of 8 infertile menopausal women (with amenorrhea of 12-96 months). In 40% - menstrual cycles were restored within 1-3 months after the injection, 18.5% resuption of ovulation cycles, 1-5 oocytes obtained from the IVF cycles (Pantos et al., Abstract, ESHRE 32nd Annual Meeting 2016).
- In 2018, Sills et al. Injection of activated PRP in 4 cases and observed increased AMH and significantly decreased FSH levels with at least one embryo obtained from the IVF cycles (Sils et al., Gynecol Endocriol, 2018).

AUTOLOGOUS STEM CELL OVARIAN TRANSPLANT*

***OVARIAN INFUSION OF BONE MARROW DERIVED STEM CELLS**

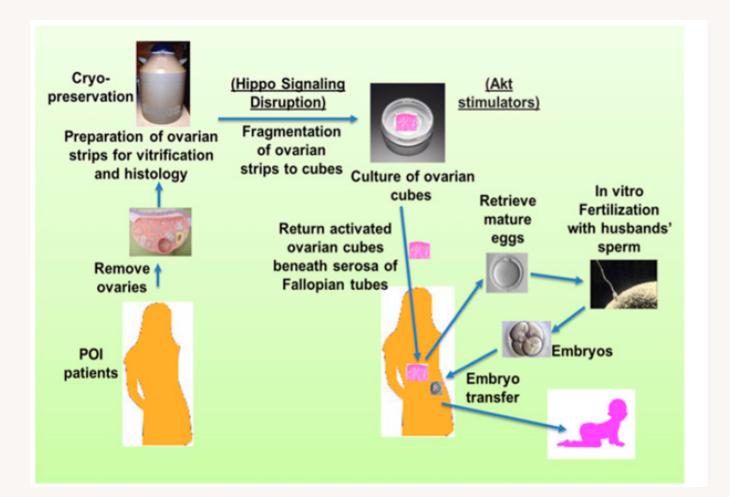
INTRAOVARIAN *INFUSION* OF BONE MARROW DERIVED <u>STEM CELLS</u>

- Bone marrow derived stem cells (BMDSC) represent a heterogeneous group of mononuclear cells with multi-differentiation potential that includes several hematopoetic, mesenchymal and endothelial stem/progenitor cells.
- BMDSC infusion promotes human and mouse follicular growth by incerasing ovarian vascularization, stromal cell proliferation, and reducing cell death (Herraiz et al., 2016).
- Long-term fertility rescue has been achieved in chemotherapy-induced mouse ovaries mimicking aging, POR or POI after infusion of adult stem cell from different origins.
- The ASCOT technique (Herraiz et al., 2018):

ISGE

2-5 DECEMBER 2020

Necological


- The Autologous Stem Cell Ovarian Transplant (ASCOT) procedure require isolation of BMDSC from peripheral blood by apheresis (or bone marrow biopsy).
- The stem cells are infused into the ovarian artery by catheterism (or direct injection via laparoscopy, transvaginal ultrasound-guided injection, or a combination).

IN VITRO ACTIVATION (IVA) OF DORMANT FOLLICLES*

***USING CHEMICAL COMPOUNDS OR FRAGMENTATION**

JAPAN 2013: <u>CLINICAL APPLICATION</u> OF IN VITRO ACTIVATION OF FOLLICLES IN <u>POI</u> PATIENTS

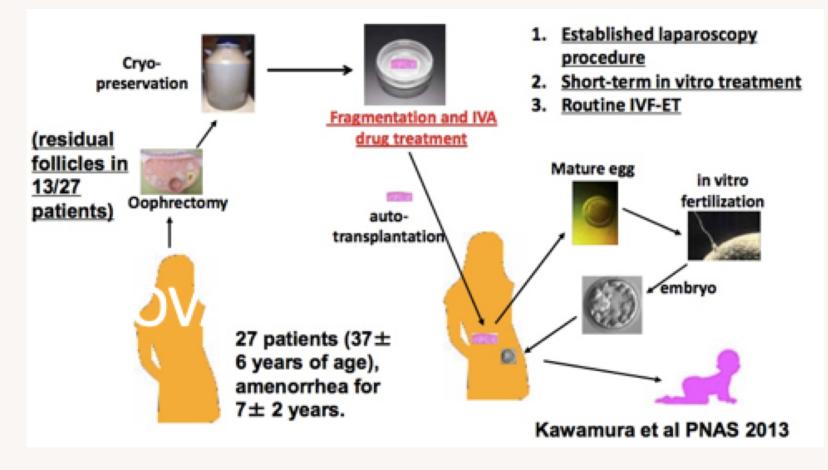
ISGE

GYNECOLOGICAL

endocrinology 19" World Congress 2-5 DECEMBER 2020 Kawamura et al., 2013

SEGOVA (PRP+ASCOT+aIVA)*

*USING AUTOLOGOUS COMPOUNDS AND FRAGMENTATION

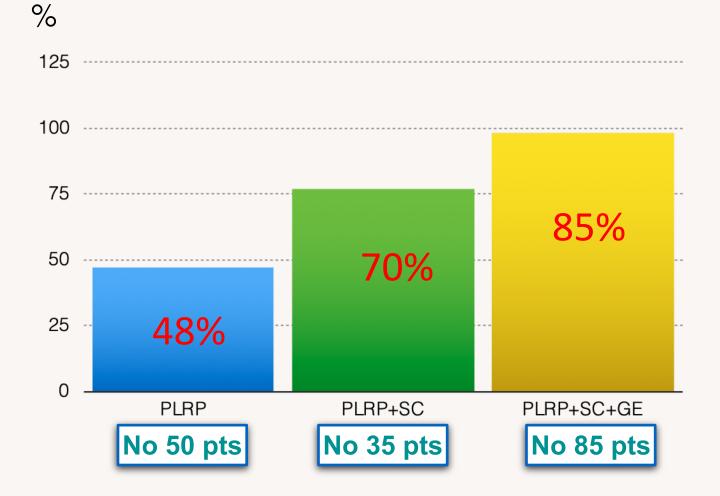

ClinicalTrials.gov Identifier: NCT04009473

aIVA - Biologic therapy

Ovarian cortical biopsy Microfragmentation aPLRP incubation US retransplantation

ഷ്

VIRTUAL CONGRESS

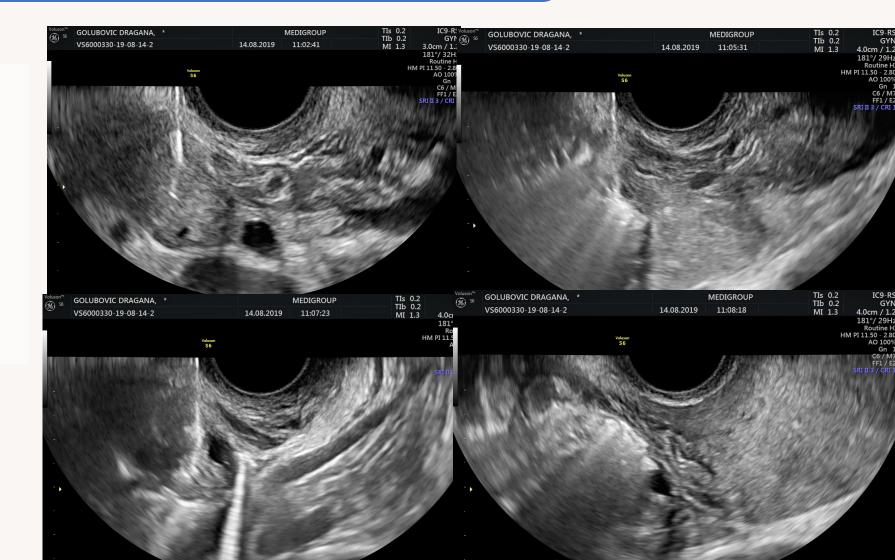


SEGOVA Hormones

No 170 pts

2014-2019

The gonades regain their function



SEGOVA Outcome

- 85%
- Hormonal respond
- 10%
 Postmenopausal
 pregnancies

AUTOLOGOUS MITOCHONDRIAL TRANSFER IN CONNECTION WITH ICSI*

*TO BOOST OOCYTE QUALITY IN "OLD" OOCYTES

<u>AUGMENT</u> DID NOT SEEM TO IMPROVE PROGNOSIS AND THE STUDY WAS <u>DISCONTINUED</u>

CONCLUSION:

Injecting autologous mitochondria into the patient's own oocyte at the time of ICSI **does not** benefit the developmental capacity of treated oocytes, the euploidy status of the embryo, nor the pregnancy rate.

The AUGMENT approach should not be considered as a novel way of ovarian rejuvenation in poor prognosis patients with a background of bad embryo quality.

TAKE HOME MESSAGES

- *intraovarian injection of Platelet-rich Plasma* (PRP) Clinical studies very limited and without proper controls the effect of the procedure in **inconclusive**.
- <u>Infusion of stem cells</u> (ASCOT) approach involving the whole BMDSC population seems to be a **promising approach** with a 33.3% treatment pregnancy rate.
- <u>In Vitro Activation</u> (IVA) of dormant follicles using chemical compounds and/or fragmentation appears to have a **low success rate** and studies are difficult to reproduce.
- <u>SEGOVA</u> (PRP+ASCOT+aIVA) of dormant follicles using autologous PRP compounds and/or fragmentation appears to increase success rate and studies are difficult to reproduce.
- Autologous <u>mitochondrial transfer</u> (AUGMENT) of oocytes in connection with ICSI **does not** seem to improve reproductive outcomes in poor-prognosis patients.

